Effects of Peripheral TCNE-Phenyl Charge-Transfer Interactions on Ligational Energetics to a Conformationally Flexible Macrocyclic Receptor

Gary A. Impey and Dennis V. Stynes*

Department of Chemistry, York University North York, Ontario, Canada M3J IP3

Received March 15, 1993
A previous paper describes the use of a "gated glyoxime" (Chart I) to manipulate a superstructure in the vicinity of a metal binding site, producing nonbonded repulsive effects on ligand binding. ${ }^{1}$ Here we explore the consequences of attractive $\pi-\pi$ interactions ${ }^{2,3}$ between tetracyanoethylene (TCNE) and phenyl groups positioned in a face-to-face geometry by this device.

Tetracyanoethylene and a variety of other nitriles have been previously shown to bind to $\mathrm{Fe}\left(\mathrm{DMGBF}_{2}\right)_{2}$ via the nitrile nitrogen as rather weak σ-donor ligands, ${ }^{4}$ similar to $\mathrm{CH}_{3} \mathrm{CN}$. We find that the binding of TCNE becomes exceptionally strong in Fe $\left(\mathrm{DMGBPh}_{2}\right)_{2}$ complexes ${ }^{5}\left(\mathrm{DMGBPh}_{2}=(\right.$ dimethylglyoximato $)$ diphenylborate) as a result of donor-acceptor interactions (commonly known as charge-transfer interactions) with the peripheral phenyl groups.

Electronic spectra of BF_{2} and BPh_{2} complexes are compared in Figure 1. (Data for several nitrile complexes are collected in Table I.) A broad Fe to TCNE CT band is found in the near IR, while Fe to oxime CT bands occur at 400 nm . The red shift found in the Fe to TCNE CT band of about $1500 \mathrm{~cm}^{-1}$ reflects a small electronic difference between BPh_{2} and BF_{2} systems. Evidence of a TCNE-phenyl interaction is provided by the additional band at 500 nm in the BPh_{2} system. ${ }^{6}$ This feature is assigned to a through-space phenyl-TCNE CT interaction. It occurs at lower energy than that reported for the benzene-TCNE CT complex (384 nm) ${ }^{2}$ but has a comparable extinction coefficient and bandwidth. A coordinated TCNE would be expected to be a better acceptor than free TCNE. Both the phenyl to TCNE and the iron to TCNE CT bands appear with doubled intensity in the bis-TCNE derivative.

The $C_{2 v}$ conformation of the $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{TCNE}) \mathrm{X}, \mathrm{X}=$ $\mathrm{CH}_{3} \mathrm{CN}$ and pyridine (PY), in which both axial phenyls are directed toward the TCNE face is inferred from the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{7}$ A distinct splitting of the DMG methyl resonance is found in the PY derivative, consistent with a η^{1}-nitrile geometry in which the TCNE lies in the plane bisecting the glyoxime unit and sandwiched between the two axial phenyl groups. Slow rotation of the TCNE about the $\mathrm{Fe}-\mathrm{NC}$ axis is enforced by the phenyl-TCNE interactions.

Thermodynamic effects of the phenyl-TCNE interaction were quantified through extensive equilibrium studies (eqs 1-4). Equilibrium constants for ligation to BPh_{2} and BF_{2} systems were

(1) Stynes, D. V.; Leznoff, D. B.; deSilva, D. G. A. H. Inorg. Chem., in

 press.(2) Merrifield, R. C.; Phillips, W. D. J. Am. Chem. Soc. 1958, 80, 2778. (3) (a) Foster, R. Organic Charge-Transfer Complexes; Academic: New York, 1969. (b) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
(4) Thompson, D. W.; Stynes, D. V. Inorg. Chem. 1991, 30, 636.
(5) $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY}) \mathrm{TCNE}$. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{3} 7 \mathrm{~N}_{9} \mathrm{~B}_{2} \mathrm{O}_{4} \mathrm{Fe}$: C 62.88; H, 4.54; N, 15.35. Found: C, 62.13; H, 4.50; N, 15.31. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.63,2.60\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 6.97,7.68,8.78$ (PY), 7.55, $7.28(\mathrm{~m}$ $\left.\mathrm{Ph}_{\text {eq }}\right), 7.2,7.0\left(\mathrm{Ph}_{\mathrm{ax}}\right)$. IR: $\nu_{\mathrm{NC}} 2178$. $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{TCNE})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right), 2.75\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 7.5,7.23$, 7.06, 6.93 (Ph).
(6) Interaction of free TCNE with benzenes, $\left(\mathrm{Ph}_{2} \mathrm{~B}\right)_{2} \mathrm{O}$, or any inert $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}$ complex is far too weak and not observed at mutual concentrations below 0.01 M .
(7) Chemical shifts for the pyridine and phenyl protons resemble those in the $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ shown to possess the sand wiched geometry ${ }^{1}$ and in which no close phenyl-PY contacts arise. In Fe$\left(\mathrm{DMGBPh}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{TCNE})$, the $\mathrm{CH}_{3} \mathrm{CN}$ resonance is at $\delta 2.03$ and thus does not experience a phenyl contact

determined by spectrophotometric titration in dichloromethane solution. Binding constants for TCNE were typically 3-4 orders of magnitude greater than those found in the BF_{2} system. Binding of TCNE to $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})_{2}$ was so strong ($K=3 \times 10^{4}$) as to be stoichiometric at $[\mathrm{Fe}]=0.0001 \mathrm{M}$ and $[\mathrm{PY}]=0.01 \mathrm{M}$. At higher [PY], correction for the PY-TCNE complex ($K=12$ M^{-12} was required. Reaction with CO (eq 2) provided an independent and more accurate measure of the thermodynamic stability of the TCNE complex uncomplicated by PY-TCNE interactions. Kinetic data ${ }^{8}$ for reactions 1 and 2 reveal a TCNE ligand some 4 orders of magnitude more inert than normal (k-TCNE $=6 \times 10^{-4} \mathrm{~s}^{-1}$.
The binding of phthalonitriles, which possess LUMOs somewhat higher in energy than those of TCNE (see Table I), were also studied in reactions 1-4. While phthalonitrile (PT) is only marginally different from $\mathrm{CH}_{3} \mathrm{CN}$ in either the BF_{2} or BPh_{2} system, a significant enhancement in binding of the better acceptor, 4-nitrophthalonitrile (NPT) was observed in the BPh_{2} system. (For eq $1, \mathrm{BPh}_{2}, K=22, k_{\text {-npt }}=1 \mathrm{~s}^{-1}\left(0.05 \mathrm{~s}^{-1}\right.$ at $\left.0^{\circ} \mathrm{C}\right)$; $\mathrm{BF}_{2}, K=0.007, k_{-\mathrm{NPT}}$ estimated as $20 \mathrm{~s}^{-1} .9$

Free energies of formation (Table II) for each complex were calculated relative to the parent $\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ complexes in the BPh_{2} and BF_{2} systems from equilibria summarized in footnotes in Table II. The differences in free energy between the BF_{2} and BPh_{2} complexes, $\Delta \Delta G$, provide evidence of significant interactions between the phenyl groups and axial ligands. Large positive $\Delta \Delta G$ values reflect destabilizing effects of repulsive nonbonded interactions of pyridine with boron-linked axial phenyl groups (face-to-face). These effects correlate with the ground-state conformations deduced from the NMR. No PY-Ph contacts occur in $\mathrm{Fe}(\mathrm{PY})\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and FePY$)(\mathrm{CO})$ which adopt the $C_{2 v}$ structure, placing the PY on the open face. ${ }^{1}$

Negative $\Delta \Delta G$ values occur when attractive TCNE-phenyl interactions are present. A $3-5 \mathrm{kcal} / \mathrm{mol}$ enhancement is found in these cases. The magnitude of the effect is in the range expected on the basis of the enthalpy reported for TCNE-aromatic chargetransfer complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (Example: TCNE-durene, $\boldsymbol{K}=$ $\left.54.2, \lambda=480 \mathrm{~nm}, \Delta H=5 \mathrm{kcal} / \mathrm{mol}, \Delta S=-9 \mathrm{eu} .{ }^{2}\right)$ Entropic losses are not a significant factor. ${ }^{10}$

It is interesting that the mono-TCNE complexes experience somewhat greater stabilization than the bis-TCNE complex. This suggests that the $\mathrm{Ph}-\mathrm{TCNE}-\mathrm{Ph}$ interaction in the $C_{2 v}$ conformer (the "sandwiched TCNE") is more favorable than two $\mathrm{Ph}-\mathrm{TCNE}$ interactions in a $C_{2 h}$ structure. While counterintuitive, the result is expected on the basis of reported enthalpies in the hexa-

[^0]

Figure 1. Visible spectra. Solid line: $\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})(\mathrm{TCNE})$. Dotted line: $\mathrm{Fe}\left(\mathrm{DMGBF}_{2}\right)_{2}(\mathrm{PY})(\mathrm{TCNE})$.

Table I. Visible Spectral Data ${ }^{a}\left(\lambda_{\text {max }}, \mathrm{nm}\right)$

	MOx CT			MAx CT		
	BPh_{2}	BF_{2}	BPh_{2}	BF_{2}	$\mathrm{PhCT} \mathrm{BPh}_{2}$	
$\mathrm{Fe}(\mathrm{PY})_{2}$	526	521	380	367		
$\mathrm{Fe}(\mathrm{PY})(\mathrm{TCNE})^{c}$	430	430	1100	970	504	
$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{TCNE})$	400	401	1055	970	508	
$\mathrm{Fe}(\mathrm{TCNE})_{2}$	383	388	1092	922	513	
$\mathrm{Fe}(\mathrm{PY})(\mathrm{NPT})$	470	460	625	560		
$\mathrm{Fe}(\mathrm{PY})(\mathrm{PT})$	470	460	b	b		
$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	453	444				
$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{PY})$	490	488	354			

${ }^{a}$ MOx CT, metal to oxime CT band. MAx CT, metal to axial ligand (PY, TCNE, NPT, PT) CT band. Ph CT is the intramolecular phenyl to TCNE CT band. ${ }^{b}$ MAx CT position overlaps MOx CT band. ${ }^{c} \in=$ 5200,2600 , and $8000 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$ at 430,504 , and 1100 nm , respectively.

$$
\begin{gather*}
\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})_{2}+\mathrm{TCNE} \rightleftharpoons \\
\mathrm{Fe}(\mathrm{DMGBPh})_{2}(\mathrm{PY})(\mathrm{TCNE})+\mathrm{PY} \tag{1}\\
\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})(\mathrm{TCNE})+\mathrm{CO} \rightleftharpoons \\
\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}(\mathrm{PY})(\mathrm{CO})+\mathrm{TCNE} \tag{2}
\end{gather*}
$$

$$
\begin{align*}
& \mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}+\mathrm{TCNE} \rightleftharpoons \\
& \quad \mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{TCNE})+\mathrm{CH}_{3} \mathrm{CN} \tag{3}
\end{align*}
$$

$$
\begin{array}{r}
\mathrm{Fe}\left(\mathrm{DMGBPh}_{2}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)(\mathrm{TCNE})+\mathrm{TCNE} \rightleftharpoons \\
\mathrm{Fe}(\mathrm{DMGBPh})_{2}(\mathrm{TCNE})_{2}+\mathrm{CH}_{3} \mathrm{CN} \tag{4}
\end{array}
$$

methylbenzene-TCNE system. ${ }^{11}$ Data for the other nitriles show that the CT stabilization drops off in the expected order TCNE $>$ NPT $>$ PT $>\mathrm{CH}_{3} \mathrm{CN}$.
As a receptor, this device incorporates many advantages over conventional organic hosts. ${ }^{12}$ The metal-ligand interaction provides a level of control very difficult to achieve in organic
(11) Liptay, W.; Rehn, T;; Wehning, D.; Schanne, L.; Baumann, W. Lang, W. Z. Naturforsch. 1982, 37a, 1427-1448.

Table II. Free Energies of Ligation (kcal/mol) to $\mathrm{Fe}(\mathrm{DMGX})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ Complexes at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

	X		
	$\mathrm{BF}_{2}{ }^{c}$	$\mathrm{BPh}_{2}{ }^{d}$	$\Delta \Delta G$
$\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$	0.0	0.0	0.0
$\mathrm{Fe}\left(\mathrm{CH} \mathrm{CN}_{3} \mathrm{CN}\right) \mathrm{PY}$	-5.8	-5.6	0.2
$\mathrm{Fe}(\mathrm{PY})_{2}$	-9.1	-6.4	2.7
$\mathrm{Fe}\left(\mathrm{CH} \mathrm{H}_{3} \mathrm{CN}\right) \mathrm{TCNE}$	-1.6	-5.3	-3.7
$\mathrm{Fe}(\mathrm{PY}) \mathrm{CO}$	-12.6	-12.9	-0.3
$\mathrm{Fe}(\mathrm{PY}) \mathrm{TCNE}$	-7.9	-12.5	-4.6
$\mathrm{Fe}(\mathrm{TCNE})_{2}$	-2.7	-5.0	-2.3
$\mathrm{Fe}(\mathrm{PY})^{2} \mathrm{NPT}^{a}$	-6.1	-8.2	-2.1
$\mathrm{Fe}(\mathrm{PY})^{b} \mathrm{PT}^{b}$	-6.1	-7.0	-0.8

${ }^{a}$ NPT $=4$-nitrophthalonitrile. ${ }^{b} \mathrm{PT}=$ phthalonitrile. ${ }^{c}$ Equilibrium constants, BF_{2} system. Binding to $\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$: $\mathrm{PY}, K_{1}=1.8 \times 10^{4}$, $K_{2}=250$; TCNE, $K_{1}=15 \pm 5, K_{2}=6 \pm 3$. Binding to $\mathrm{Fe}(\mathrm{PY})_{2}:$ TCNE, $K_{1}=0.14 ; \mathrm{CO}, K_{1}=4 \times 10^{2} .{ }^{d}$ Equilibrium constants, BPh_{2} system. Binding to $\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$: PY, $K_{1}=1.2 \times 10^{4}, K_{2}=4.0 ; \mathrm{TCNE}, K_{1}=$ $8000, K_{2}=0.55$. Binding to $\mathrm{Fe}(\mathrm{PY})_{2}: \mathrm{TCNE}, K_{1}=3 \times 10^{4} ; \mathrm{CO}, K_{1}$ $=5 \times 10^{4}$; NPT, $K_{1}=22$; PT, $K_{1}=3$. For $\mathrm{Fe}(\mathrm{PY})(\mathrm{TCNE})+\mathrm{CO}=$ $\mathrm{Fe}(\mathrm{PY})(\mathrm{CO})+\mathrm{TCNE}: K=1.6$. The CO solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is taken as 0.008 M at 1 atm total pressure. Estimated error in K is $<20 \%$ except as noted.
receptors. By grafting weak interactions onto much stronger ligational energies, binding is assured even in the absence of peripheral assistance. Off-setting entropy losses, which generally prohibit the experimental observation of interactions weaker than a few kcal/mol, are eliminated. The flexibility of these systems allows considerable geometry optimization by the interacting fragments and avoids "entry barriers" which may be encountered in more rigid hosts. ${ }^{13}$

Acknowledgment. Financial support for this work from York University is gratefully acknowledged.

[^1]
[^0]: (8) Kinetic data for reaction $2\left(\mathrm{D}\right.$ mechanism): $k_{-\mathrm{TCNE}}=6 \times 10^{-4} \mathrm{~s}^{-1}$, $k_{+ \text {TCNE }} / \mathrm{K}_{+} \mathrm{CO}=5$, and $k_{-C 0}=6 \times 10^{-5} \mathrm{~s}^{-1}$.
 (9) Data for phthalonitrile (eq 1): for $\mathrm{BPh}_{2}, K=3$; for $\mathrm{BF}_{2}, \mathrm{~K}=0.007$. Assuming $k_{+\mathrm{PT}} / k_{+\mathrm{PY}}=2$, we calculate $k_{-\mathrm{pT}}=5$ and $20 \mathrm{~s}^{-1}$ respectively.
 (10) In multisite binding of a substrate to a preorganized host, enthalpic contributions for each interaction are additive while entropic losses are largely factored out by use of the BF_{2} reference.

[^1]: (12) (a) Rebek, R., Jr. Angew. Chem. 1990, 102, 261. (b) Diederich, F. Cyclophanes; Monographs in Supramolecular Chemistry; Royal Society of Chemistry: Cambridge, 1991. (c) Sijbesma, R. P.; Wijmenga, S. S.; Nolte, R. J. M. J. Am. Chem. Soc. 1992, 114, 9807. (d) Zimmerman, S. C.; Wu, W.; Zeng, Z. J. Am. Chem. Soc. 1991, 113, 196-201.
 (13) Cram, D. J.; Tanner, M. E.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 7717-7727.

